

Kalari and his colleagues to more accurately separated the brightness of R136a1 from its nearby stellar companions, which led to a lower estimate of its brightness and therefore its mass. The sharper Zorro image allowed NSF's NOIRLab astronomer Venu M. Even with this lower estimate, R136a1 still qualifies as the most massive known star.Īstronomers are able to estimate a star's mass by comparing its observed brightness and temperature with theoretical predictions. The new Zorro observations, however, indicate that this giant star may be only 170 to 230 times the mass of the Sun. Previous observations suggested that R136a1 had a mass somewhere between 250 to 320 times the mass of the Sun. This colossal star is a member of the R136 star cluster, which lies about 160,000 light-years from Earth in the center of the Tarantula Nebula in the Large Magellanic Cloud, a dwarf companion galaxy of the Milky Way. The combination of densely packed stars, relatively short lifetimes, and vast astronomical distances makes distinguishing individual massive stars in clusters a daunting technical challenge.īy pushing the capabilities of the Zorro instrument on the Gemini South telescope of the International Gemini Observatory, operated by NSF's NOIRLab, astronomers have obtained the sharpest-ever image of R136a1 - the most massive known star.

In comparison, our Sun is less than halfway through its 10 billion year lifespan. Giant stars also live fast and die young, burning through their fuel reserves in only a few million years. One particularly challenging piece of this puzzle is obtaining observations of these giants, which typically dwell in the densely populated hearts of dust-shrouded star clusters. Astronomers have yet to fully understand how the most massive stars - those more than 100 times the mass of the Sun - are formed.
